System Innovation for Sustainability: Using Systems Thinking and Design Thinking

I recently attended a webinar on using systems thinking and design thinking conjointly to address sustainability challenges. The webinar was presented by Peter Coughlan of IDEO and Colleen Ponto of Seattle University. It was great to hear from these forefront thinkers/doers thoughts similar to mine on the potential of using systems thinking and design thinking conjointly. I also derived a lot of learning on how to communicate these ideas using simple language and examples. I am looking forward to seeing this thinking spread to a wider audience and used by policy makers (top-down actors) and innovators (bottom-up) alike, preferably in collaborative projects. Inspired by this webinar, I explain my thoughts on conjoint use of systems thinking and design thinking that I’ve been mulling over for a while. I have five main messages.

1. All design and innovation efforts to achieve sustainability should be based on sustainability science:

Sustainability is a system property. In order to plan for and achieve the required transformations towards becoming sustainable, we need to work with a set of questions which cannot be answered through traditional disciplinary segmentation of knowledge (Figure 1). First we need to understand the systems needing to be transformed and the interrelationships between these systems. This knowledge is acquired and interpreted by basic disciplines such as physics, chemistry, sociology and ecology. Second, we need to understand what we can do to transform these systems. The knowledge to answer this question comes from the applied disciplines such as engineering, agriculture, architecture and business. Third, we need to establish what we want to do and set our priorities towards our destination based on what we know about the systems and what we can do to transform them. The knowledge for this comes from disciplines such as planning, law, politics and design. Finally, we need to establish a values framework which will oversee our work towards sustainability and will inform our actions. The knowledge for this comes from disciplines dealing with human values such as ethics, philosophy and theology.

Figure 1. Transdisciplinary generation of knowledge (Max-Neef 2005)

Sustainability science has complex adaptive systems theory as its main tenet, focuses on the dynamic interactions between nature and society and aims to bridge the natural and social sciences for seeking creative solutions to these complex challenges.  (Clark & Dickson, 2003; Jernek et al., 2010; Kates et al., 2001; Spangenberg, 2004). Sustainability science is a transdiscipline which integrates knowledge from all disciplinary domains to solve socially relevant complex problems. Sustainability scientists, instead of developing disciplinary expertise, focus on understanding specific sustainability problems by tapping into the knowledge generated from all disciplines relevant to the problem. The expertise gained by sustainability scientists can be described as a new generation expertise because of its transdisciplinary nature.

Although there is a lot of discussion on sustainability within the design and innovation field and there are a lot of claims on sustainability of particular products/services/technologies or business operations/models/processes, I do not observe much of this being based on the science of sustainability. Unless designers/innovators acknowledge and use the growing body of knowledge generated by sustainability science, there is not much potential for design/innovation efforts to address the right problems with the right objectives.

2. In order to achieve sustainability, our design and innovation efforts should intervene into systems:

Today we know that reducing unsustainability through efficiency improvement approaches will not produce sustainability; it will only save us miniscule amounts of time before the systems we rely on collapse or become unviable to support human life. Traditionally and still currently, we focus most of our efforts to improve existing products/services or design new products/services with higher efficiency than the earlier ones. Although these approaches have their place in transforming systems, if remain as our sole strategic framework for innovation they become lock-ins and hinder systemic transformations (e.g. Könnölä & Unruh, 2007). Product-centred innovation approaches should leave their places to innovation efforts aiming to meet particular social functions, thus breaking from incrementalist tendencies and generating opportunities for radical systemic transformations. The new generation innovation approaches do not start with a product concept; instead, they start with identifying new ways of meeting human needs which have traditionally been met by particular products or services or left unmet. For example, in the new approaches to innovation, the starting aim is not to develop a more efficient washing machine but generating ideas on how to provide clean clothes to people. By taking a step back and identifying the actual need, innovative concepts are generated and new organisational models can be developed. This approach also enables moving from a fixation of technological development to developing both technological and social interventions conjointly meeting the specified need.

The new generation innovation efforts aiming to address interrelated environmental and social issues should be based on sustainability science and innovate not only for developing new technological solutions to sustainability problems but also to generate new organisational models, inspire new social and cultural norms and to eventually alter the institutional context within which socio-technical systems reside. This require both macro and micro-level innovations; in other words we need to optimise our designs for the systems as well as for the individuals using the products/service/technologies of the systems. Leveraging micro- (product/service) and macro-level (system) innovations simultaneously mandates business plans to cover longer periods than they traditionally have and strategic and market-creating approaches to innovation than market-following approaches.

Figure 2. Levels of innovation for sustainability (Brezet, 1997; Gaziulusoy, 2010; 2011)


3. Design thinking is a very appropriate approach to use in innovation for sustainability especially when used in conjunction with systems thinking:

Design in society has been understood with references to its outputs such as fashion design (clothes), urban design (cities), architectural design (buildings), car design (automobiles), product design (products), service design (services) etc. However, design is a fundamental human cognitive ability, it is a particular way of thinking. Design professionals are trained to use design thinking to generate solutions for specified challenges. Design thinkers tap into different types of knowledge available to humanity to reach a normative goal. Design thinking is a process which starts with defining/redefining the problem to be addressed. This is followed by research, creative exploration, evaluation of ideas and implementation and communication of the solution. The output of design thinking can be any of the above mentioned outputs but also through design thinking one can conceive new systems, processes, organisational models, enterprises, policies and even community campaigns. The strength of design thinking in the context of innovation for sustainability lies in its emphasis on the divergent process of generating alternative solutions before acting upon one compared to traditional optimisation approaches which selects the optimum solution among available options. Design thinking process can be applied to almost any problem to transform people, organisations and systems. This has been coined with a new term by UK Design Council: Transformation Design. The new generation innovation approaches explicitly or implicitly use design thinking for transforming the society.

Figure 3. Conjointly using systems thinking and design thinking (Coughlan and Ponto, 2012)

Design thinking can reach its potential to address sustainability challenges only if it is conjointly used with systems thinking as these two approaches complement each other in achieving system innovations. Systems thinking looks at the history and present state of systems to analyse and understand them. Design thinking looks at the present state of a system and asks the normative, future-oriented question of “what can be?” in order to innovate and transform the systems. Systems thinking has qualitative and quantitative tools and methods which help to uncover patterns and structures within a system to explain how the events -the problems we observe- have been created through time. On the other hand, design thinking has several tools and methods to uncover the mental models which created the structures and historical patterns. Systems thinking optimises at system level whereas design thinking optimises at individual level therefore together they can create alignment between the innovation direction of system components and systems consisting of those components.

4. Design and innovation efforts should be collaborative and empowering:

One fundamental systems thinking rule states: When intervening in a system, effort should be put in restoring or enhancing the system’s own ability to solve its problems (Meadows, 2008). Aligned with this, it is really important that in our design and innovation efforts we analyse and address problems with a good contextual understanding and in a way to create opportunities within that context. Two solutions addressing the problem of access to safe drinking water can be used to illustrate this point.

It is common knowledge that currently approximately 800,000 people lack access to an improved water source. There have been many efforts to address this problem which also include developing purification technologies. One product marketed as LifeStraw, designed by a Swiss company, became one of the iconic products addressing this problem in developing countries. This product consists of a plastic tube through which a person can suck water from a water body. The water is filtered by fibres that are in the tube as the person drinks it. A person generally goes through one or two of these products in a year. This product is often referred to as a great example of sustainable design. This product has received criticitism for being too expensive for the intended use contexts and the funding was supplied by health campaigns run by NGOs which probably tapped into foreign aid.

Purifying water is not rocket science; there is no need for sophisticated production technologies, plastic cases and top-secret filter formulae. The problem with access to drinking water does not rise from the lack of appropriate technologies in a context to purify water, it rises because of the lack of incentives to act in ways to enhance and restore those contexts their own ability to purify their own water (because the so-called “innovators” cannot make a business case otherwise). Low cost water purification systems can be easily made using local materials and low-tech manufacturing technologies. A good example is the clay pot filter developed by Australian material scientist and potter Tony Flynn. This filter is made by mixing clay with fine grained organic material fired without the requirement of kilns. This technology is open source so that anyone can make these filters and the knowledge of making them can be transferred to the communities experiencing the problem.

Therefore, both in identifying and addressing problems design and innovation efforts should use human-centred approaches to generate solutions which are empowering for the intended users. This of course also requires shifting from profit-centred economic models of doing business to people-centred models, which essentially can be conceived as a design problem.

5. Design and innovation efforts should be based on a personal vision aligned with the future we would like to see in the world

Unfortunately, vision as a term has been narrowed down to mean a single-sentence, “measurable” statement by the mainstream management literature and practice of 1990s. Recently, the power and importance of visions and the proper practice of visioning is being rediscovered by people who are working in the field of sustainability, from scientists to grassroots activists to policymakers. Futurists define visions as “futures for the heart”. On the contrary to single-sentence visions of 1990s, the more detailed and the more collaboratively developed the visions for sustainable futures are the better. Our design and innovation efforts can lead us towards achieving system innovations for sustainability only if our day to day actions are informed by a personal vision which takes into consideration the spatial and temporal influence we have as individuals on our workmates, company vision, fellow citizens, policy, and future generations.

Temporal and spatial influences of personal action and vision

References I used in this post:

Brezet, H. (1997). Dynamics in ecodesign practice. Industry and Environment, 20(1-2), 21-24.

Clark, W. C., & Dickson, N. M. (2003). Sustainability science: The emerging research program. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8059-8061.

Coughlan, P., & Ponto, C. (2012). Systems Thinking + Design Thinking: Moving from What Was and What Is to What Could Be [Webinar]. USA

Gaziulusoy, A. I. (2010). System Innovation for Sustainability: A Scenario Method and a Workshop Process for Product Development Teams (Ph.D. thesis). University of Auckland, Auckland.

Gaziulusoy, A. I. (2011). System Innovation for Sustainability at Product Development Level: A Conceptual Framework. Proceedings of the Tao of Sustainability: An International Conference on Sustainable Design Strategies in a Globalization Context, October 27-29, 2011, Beijing, China.

Jerneck, A., Olsson, L., Ness, B., Anderberg, S., Baier, M., Clark, E., … Persson, J. (2010). Structuring sustainability science. Sustainability Science, 1-14.

Kates, R. W., Clark, W. C., Corell, R., Hall, J. M., Jaeger, C. C., Lowe, I., … Svedin, U. (2001). Environment and development: Sustainability science. Science, 292(5517), 641-642.

Könnölä, T., & Unruh, G. C. (2007). Really changing the course: the limitations of environmental management systems for innovation. Business Strategy & the Environment 16(8), 525-537.

Max-Neef, M. A. (2005). Foundations of transdisciplinarity. Ecological Economics, 53(1), 5-16.

Meadows, D. H. (2008). Thinking in systems: a primer. White River Junction, Vt.: Chelsea Green Publishing.

Spangenberg, J. H. (2004, August 27-28, 2004). Sustainability Science: Which Science and Technology for Sustainable Development? Presented at the meeting of the IRDF Forum on Sustainable Development, Johannesburg. Available from http://www.istas.ccoo.es/escorial04/material/dc10.pdf

UNICEF/WHO. (2012). Progress on Drinking Water and Sanitation. Available from http://whqlibdoc.who.int/publications/2012/9789280646320_eng_full_text.pdf 

Some questions on system innovation for sustainability

This evening I had a Skype chat with Anna Birney, who is the head of System Innovation Lab at Forum for the Future, to meet and to exchange views and ideas about the topic. I learned a little bit more about the new strategy FFF has just launched and explained Anna what I’ve been doing in relation to system innovation in the past five years. Both Anna and I share the opinion that the theories around system innovation and transitions, although useful to understand how systemic change occurs in socio-technical systems, has so far been a little bit slack in providing pointers and leverage points to transform systems at practical level. I also must add to this that, the discourse has been predominantly techno-centred and not much emphasis has been put on social innovations in system innovation experiments. This is, in my opinion, mainly due to the fact that the theories have been coming out of the European Union context which is primarily post-industrial, advanced in technological innovation and dominated by a Western worldview of well-being. I know through some of my contacts in academia that research in system innovation area is now starting to investigate emerging and bottom-of-the-pyramid economies (for example the program led by Rob Raven) and validity of models and theories in different socio-cultural contexts. I have been mulling over some questions about system innovation especially in the context of companies and innovation teams for a long time now. I’ll list them here. But first I’ll introduce the multi-level perspective on system innovations which has been developed over the years mainly by Rene Kemp and Frank Geels who are well-known scholars in this area (see Kemp, 1994; Geels, 2005a, 2005b; Geels and Schot, 2007).

In order to investigate innovation at system level, not only technological change but also changes in user practices, markets, regulations, culture and infrastructure, which altogether constitute the socio-technical regime, should be addressed. This model portrays the dynamic nature of system innovation through a layered structure. According to this model, the stability increases and rate of change decreases towards upper levels of the socio-technical system, but the depth and influence of change increases towards lower levels. Nevertheless the change does not happen in a linear fashion and the relationship between the three levels is similar to a nested hierarchy. The layers have internal dynamics as well as influencing changes at other levels and the central focus is at the middle where the socio-technical regime resides. Geels (2005a, p.83) explains “First, novelties emerge in technological and/or market niches. Niches are crucial for system innovation, since they provide the seeds of change. The emergence of niches is strongly influenced by existing regimes and landscape, … [T]he influence from the regimes on niches is stronger and more direct than the influences from landscapes, which is more diffuse and indirect” . The niches are loosely structured and there is much less co-ordination among actors. The regimes are more structured than niches and the rules of the regimes have co-ordinating effects on actors through a strong guidance of the activities of the actors. Landscapes are even more structured than regimes and are more difficult to change. Nevertheless, as the figure suggests, landscapes influence change both on niches and regimes; in return, niches (may) change the regimes, and the new regime changes the landscape in the longer term. The socio-technical landscape in this model is relatively static, stands for the external context and represents the physical, technical and material setting supporting the society, and cannot be changed by the actors in the short-term. Landscapes are constituted by rapid external shocks, long-term changes and factors that do not change or change only very slowly. In order to manage systemic transitions, the lowest level of MLP model, i.e. the niches, play an important role since radical innovation takes place in niches whereas in socio-technical regimes innovation is incremental. The niches consist of promising innovations and they have to be protected in order to enable them to develop from an idea or a prototype to a technology which is actually used.

With references to the MLP model, here are my questions:

1. How does sustainability issues relate to this model? My answer to this is that they are among the landscape developments and put the socio-technical regime under pressure (but only if influence the regime immediately). Some of the responses have been to enforce regulatory measures on companies which respond to these regulatory measures through compliance. On the other hand, given that governmental policy is developed with a short-term outlook, the legislative enforcements, although helping with optimisation and efficiency increases, are not likely to be the most effective leverage points to transform systems. In cases where sustainability issues are significantly relevant to a particular sector, and if companies are a little bit forward looking, there may be some voluntary action taken with a longer-term approach as seen in some of the fresh produce growing industries strategising to respond to impacts of climate change on their business. However, unless the signals from the landscape are immediately relevant to the socio-technical regime, the regime will continue with business-as-usual. This leads to the second question, which was also a question of Anna;

2. What will be the impact of landscape changes on the companies which are part of the incumbent socio-technical regime? Given the traditional business planning periods are considered very short-term in the context system innovation, those companies which fail to adopt transformational strategies are likely to go out of business. This is similar to some publishing companies, which did not have the foresight about the impacts of increasing self-publishing, becoming bankrupt suddenly. Although technologies do not come by overnight, those companies with short planning periods may not be able to adapt the changes that are being “cooked” currently but which will become “market norms” a short while beyond the preferred business planning periods of short-termist companies. On the other hand, for those companies with foresight about the impact of unfolding meta-level changes, the problem is how to manage the organisational transformation. Here I think the concept of creative destruction in a Schumpeterian way is highly relevant. Since niche innovations are particularly important in transforming socio-technical regimes, the rest of my questions are related to them and I don’t have answers to these questions as yet;

3. Niche innovations are counter to and threatening for the incumbent regimes and their business/market logic. In this case, how best to protect them and manage their maturation while avoiding the sudden collapse of the incumbent regimes? Who is going to carry out this mediatory management job? If everything will be left to the self-organising dynamics within the system, how will maturation of these niches be guaranteed? If there’s no guarantee possible, what’s our Plan B?

4. Recently there have been a lot of interest in these niches mainly in sustainable and social entrepreneurship discourses. On the other hand, these discourses does not really reference their theories or activities to sustainability science. What is the actual potential of niches in enabling systemic transformations for sustainability (especially since sustainability can only be assessed at the systemic level, that is no niche innovations can be claimed to be “sustainable” and also sustainability cannot be assessed before the fact, that is before there is a new socio-technical system with observable and measurable properties)?;

4. And finally, it has been observed that while these niches are maturing, there have been value changes in their associated entrepreneurial contexts to become aligned with the values of the socio-technical regime that is aimed to be changed. How can the individuals -the entrepreneurs- be empowered so that the value compromises they have to make to place their innovations in the market and compete with established companies and technologies do not exceed levels to nullify their change agency?

References I used in this post:

Geels, F. W. (2005a). Technological transitions and system innovations: a co-evolutionary and socio-technical analysis. Cheltenham, UK ; Northampton, Mass.: Edward Elgar Pub.

Geels, F. W. (2005b). Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective. Technological Forecasting and Social Change, 72(6 SPEC. ISS.), 681-696.

Geels, F. W., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36(3), 399-417.

Kemp, R. (1994). Technology and the transition to environmental sustainability: the problem of technological regime shifts. Futures, 26(10), 1023-1046.